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Case Study

New Multisite Cascading Calibration Approach for
Hydrological Models: Case Study in the Red
River Basin Using the VIC Model

Xianwu Xue, Ph.D."; Ke Zhang, Ph.D.2; Yang Hong, Ph.D.3; Jonathan J. Gourley, Ph.D.% Wayne Kellogg®;
Renee A. McPherson, Ph.D.5; Zhanming Wan’; and Barney N. Austin, Ph.D.8

Abstract: A novel multisite cascading calibration (MSCC) approach using the shuffled complex evolution—University of Arizona (SCE-UA)
optimization method, developed at the University of Arizona, was employed to calibrate the variable infiltration capacity (VIC) model in the
Red River Basin. Model simulations were conducted at 35 nested gauging stations. Compared with simulated results using a priori param-
eters, single-site calibration can improve VIC model performance at specific calibration sites; however, improvement is still limited in up-
stream locations. The newly developed MSCC approach overcomes this limitation. Simulations using MSCC not only utilize all of the
available streamflow observations but also better represent spatial heterogeneities in the model parameters. Results indicate that MSCC
largely improves model performance by decreasing the number of stations with negative Nash-Sutcliffe coefficient of efficiency (NSCE)
values from 69% (66%) for a priori parameters to 37% (34%) for single-site calibration to 3% (3%) for MSCC, and by increasing the number
of stations with NSCE values larger than 0.5 from 9% (9%), to 23% (23%) to 34% (29%) during calibration (and validation) periods across all
sites. DOI: 10.1061/(ASCE)HE.1943-5584.0001282. © 2015 American Society of Civil Engineers.
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(SCE-UA).

Introduction

Hydrological models are a useful tool for flood and drought pre-
diction, water resources management, and climate change assess-
ment. However, the accuracy and robustness of hydrological
models are usually limited by large uncertainties in forcing data,
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model parameters, and sometimes model structures. Parametric
uncertainties are largely caused by considerable spatial variabilities
in geomorphologies, land cover, and soil characteristics (Zak and
Beven 1999; Beven and Freer 2001). To model the effect of spatial
variability in forcing data and basin characteristics on streamflow,
distributed or semidistributed hydrological models, which are
capable of using spatially distributed forcing and parameter values,
are preferred in operational forecasts of river and stream
hydrographs (Cosgrove et al. 2009; Yao et al. 2009; Sharif et al.
2010; Khakbaz et al. 2012; Smith et al. 2012; Furusho et al. 2013;
Park et al. 2013; Xue et al. 2013; Formetta et al. 2014).

Distributed or semidistributed hydrological models contain
parameters whose values depend on topography, land cover, and
soil properties (e.g., texture and depth). A priori parameters derive
their values from these topographic and soil characteristics in
watersheds, with spatial variability dictated by in situ survey or
details in remote-sensing observations (Anderson et al. 2006;
Zhang et al. 2011, 2012; Yao et al. 2012). Because accurate a priori
parameter estimation assigns values to the spatially variable fields
(Yao et al. 2012), it offers the potential to reduce uncertainty and
guide efforts in both manual and automated calibration approaches
(Anderson et al. 2006; Zhang et al. 2012). Most important, a
priori parameters provide valuable spatial information, sometimes
completely based on remote-sensing observations, for applying
hydrological models to ungauged basins (Zhang et al. 2012).

However, although the a priori parameter approach can improve
model performance in some parts of a basin (Anderson et al. 2006;
Zhang et al. 2012), derivation of physically based effective
parameters at large scales is subject to scaling issues because of
nonlinearities in processes and spatial heterogeneity (Bashford et al.
2002). Hydrological model skill can be further improved through
calibration, resulting in better predictive capabilities for floods,
flash floods, and water resources management (Duan et al. 1992;
Zhijia et al. 2013; Choi et al. 2014; Guo et al. 2014).
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Conventionally, hydrologic models are calibrated only against
the observed discharge at a single site, usually the watershed outlet
(hereafter single-site calibration). Then the calibrated parameter
values are directly applied to the whole basin. Single-site calibra-
tion can improve model performance at the outlet of the parent ba-
sin, but it may give unsatisfactory results in interior locations
because it aims to achieve the best results at the reference site,
which may not properly reflect the spatial variation of the geomor-
phological characteristics of the subbasins (Ricard et al. 2013;
Choi et al. 2014). Simultaneously improving the simulations at
both the outlet and the inner locations is thus a major challenge
to hydrologic modelers, which is why multisite calibration is
needed to utilize observations from as many stations as possible
to improve the accuracy of the simulated results for any location
in a watershed (Ajami et al. 2004; Choi et al. 2014).

Xue (2010) applied a multisite calibration method to a
hydrological model over a karstic aquifer, resulting in more stable
and accurate results than single-site calibration. Khakbaz et al.
(2012) suggested that model simulations at the outlet could be
further improved by being calibrated at both interior points and
the outlet. Smith et al. (2012) applied multisite calibration to nested
subbasins using the MIKE SHE distributed hydrologic model for a
large watershed. Their results showed that multisite calibration
slightly decreased model performance at two out of three stations,
but greatly improved results at the third station. Thus, they argued
that multisite calibration generally has advantages over single-site
calibration. Choi et al. (2014) also showed that multisite calibration
improved model simulations at the calibrated sites and even at some
noncalibrated sites.

All of the studies just mentioned applied calibration at multiple
sites independently. In other words, they did not account for the
topographical and geomorphological connections between these
stations and basins. To further advance the multisite calibration
approach, a new multisite cascading calibration approach using
the SCE-UA (shuffled complex evolution—University of Arizona)
optimization method was developed to take advantage of observa-
tions from all nearby gauging stations, to account for hydrological
connections between stations, and to maximize the representation
of spatial heterogeneities of model parameters in a watershed by
optimizing those parameters from upstream to downstream in a
cascading sequence.

The newly developed calibration approach was applied to cali-
brate the VIC model over the Red River Basin in the south-central
United States. The Red River Basin has its headwaters in the

mountains of New Mexico and drains generally from west to east
into the Mississippi River. Its water serves as a major source for
ecosystems, tourism and recreation, drinking water supply,
agriculture, and cultural ceremonies in Oklahoma and Texas. Major
metropolitan areas in Oklahoma and Texas plan to further use the
surface waters of the Red River Basin for increasing water supplies
in the future.

The objectives of this research were (1) to develop a novel
multisite cascading calibration approach to improve VIC model
performance in the Red River Basin, including its subbasins,
and (2) to evaluate simulations by comparing them with the results
using a priori parameter values and single-site calibrated parameter
values. This paper is organized as follows: the study area and
methodology are introduced and described next; simulation results
are then presented and discussed. Finally, major findings are
summarized and conclusions are drawn.

Study Area and Methods

Study Area

The Red River Basin in the south-central United States encom-
passes approximately 239,361 km?> across portions of New
Mexico, Texas, Oklahoma, Arkansas, and Louisiana. It overlaps
with three U.S. Department of the Interior landscape conservation
cooperatives (LCCs)—the Great Plains, the Gulf Coast Prairie, and
the Gulf Coastal Plains and Ozarks—and is within the purview of
the U.S. Department of the Interior South Central Climate Science
Center. The Red River stretches 2,189 km from the New
Mexico Mountains to the Mississippi River and has five reaches
(Fig. 1). Elevations range from 5 m at the outlet to 1,505 m at
the headwater origin to the west (Fig. 1). The Red River originates
in the High Plains of New Mexico near the Texas border and
flows through the Gulf Coast Plains before draining into the
Mississippi River.

Water resources in the Red River Basin have been stressed in
recent years because of frequent drought, extreme flooding,
species’ needs for environmental flows, and increasing demands
from consumptive users (Famiglietti and Rodell 2013). In addition,
major metropolitan areas in Oklahoma and Texas view the surface
waters in the basin as viable sources for future water supplies. For
these reasons, it is of great importance to understand the basin’s
hydrological conditions and enable hydrologic models to accu-
rately simulate the hydrological processes in this region.
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Fig. 1. Study domain showing the Red River Basin in the south-central United States (the thick outline), its river network and reaches, and the

locations of its 35 stream gauges
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Hydrological Model and Data

The VIC (Liang et al. 1994, 1996) model is a macroscale,
semidistributed hydrologic model that has been successfully
applied in many regional and global hydrologic studies
(Nijssen et al. 2001; Maurer et al. 2002; Mitchell et al. 2004;
Rodell et al. 2004; Yong et al. 2010, 2014; Xia et al. 2012; Zhang
et al. 2014). It is also a process-based model that simulates snow
pack, canopy interception, evapotranspiration, surface runoff, base
flow, and other hydrological processes at daily or subdaily time
steps. One of the model’s distinguishing features is that it solves
full water and energy balances within each grid cell at each time
step for multiple elevation bands and vegetation types, in this way
capturing variability at the subgrid scale. It computes runoff
generation components using both saturation and infiltration
excess runoff processes in a model grid cell through a statistical
parameterization of subgrid heterogeneity. A nonlinear semidistrib-
uted conceptual rainfall-runoff model (ARNO) (Franchini and
Pacciani 1991; Todini 1996) is used to compute the base flow.
The impulse response function (IRF) method, which predicts the
lumped response of the contributing area (watershed) at arbitrary
locations of interest, is used as a postprocessor for river routing (Li
et al. 2013). Additional details of the VIC model can be found in
Wood et al. (1992), Liang et al. (1994, 1996), Ferguson et al.
(2012), and Li et al. (2013).

The VIC model is forced by either daily or subdaily surface
meteorological data, which include precipitation, temperature
(maximum and minimum), wind, vapor pressure, incoming
long-wave and shortwave radiation, and air pressure. The latest
version (4.1.2.h) was used in this study.

The precipitation and temperature forcing data are based on the
daily parameter elevation regressions on independent slopes model
(PRISM) precipitation and temperature data produced by the
PRISM group at Oregon State University (Daly et al. 2008).
The PRISM data set consists of 4-km gridded estimates of
precipitation and temperature for the continental United States
(CONUS) based on observations from a wide range of monitoring
networks with sophisticated quality control and bias and orographic
corrections. PRISM’s interpolation method calculates climate
elevation regressions for each grid cell; stations entering a regres-
sion are assigned weights based primarily on the physiographic
similarity of the station to the cell. Factors considered are location,
elevation, coastal proximity, topographic facet orientation, vertical
atmospheric layer, topographic position, and orographic enhance-
ment caused by the underlying terrain. The heart of the model is its
extensive spatial climate knowledge base that calculates station
weights on entering the regression function. In this study, the
gridded daily precipitation and temperature (minimum and
maximum) were aggregated to 1/8°to match the study’s modeling
spatial resolution using an area-weighted method (hereafter the
aggregated PRISM data are denoted Upscaled-PRISM).

Using an area-weighted approach, the 1/8°digital elevation
model (DEM) was derived from the 30-arcsec DEM from
hydrological data and maps based on shuttle elevation derivatives
at multiple scales (HydroSHEDS). Flow direction data were
from the global river-routing network data set produced by
Wu et al. (2011).

To calibrate and validate the VIC model, streamflow data in the
Red River Basin were obtained from the U.S. geological survey
(USGS) (http://nwis.waterdata.usgs.gov/nwis). The available
USGS stream-gauging stations in this study region were screened
by four strict quality control criteria: (1) observed daily streamflow
data from all selected stations had to be available from January
1981 to December 2012; (2) the drainage areas of these selected
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stations had to contain at least 10 grid cells; (3) the absolute relative
difference between drainage areas derived from the DEM and flow
direction data and reported by USGS had to be less than 20% for
each station; and (4) if more than one station was located within the
same 0.125 x 0.125° grid cell, the station with the larger drainage
area was selected for further analysis. A total of 35 stations met the
aforementioned criteria (Table 1). These stations captured stream-
flow covering approximately 65% of the entire Red River Basin.

Model Calibration Strategies

Selection of Model Parameters for Calibration

In addition to the elevation and meteorological forcing data, the
VIC model requires a large number of parameters that are related
to soil and vegetation types or conceptual terms. Most of the param-
eters can be derived from soil physical properties and vegetation
types using the a priori approach developed by Maurer et al.
(2002). Instead of calibrating all VIC model parameters, the six
most sensitive were selected for calibration following the sensitivity
analysis proposed by Demaria et al. (2007) and the online docu-
mentation for model calibration (http://www.hydro.washington
.edu/Lettenmaier/Models/VIC/Documentation/Calibration.shtml).
These parameters were the shape of the variable infiltration capac-
ity curve (b), the thickness of the second soil layer [d2 (cm)], the
thickness of the third soil layer [d3 (cm)], the maximum base flow
velocity from the lowest soil layer [Ds,,, (mm day~')], the
fraction of Ds,,,, where nonlinear base flow occurs (Ds), and
the fraction of the maximum soil moisture of the lowest soil layer
(Ws) where nonlinear base flow occurs. Parameter b controls the
amount of water that can infiltrate into the soil. A higher value of b
results in a lower infiltration rate and higher surface runoff, whereas
the d2 and d3 parameters affect water availability for transpiration
and base flow. Usually, less runoff (both surface and base flow) is
generated in the thicker soil depths. To represent soil moisture
dynamics near the surface, the first soil layer (d1) is defined as
a constant (dl =10 cm) for all grid cells, following Liang
et al. (1996). The valid ranges of Ds,, Ds, and Ws are
(0,30] mm day‘l, (0, 1], and (0, 1], respectively (http://www.
hydro.washington.edu/Lettenmaier/Models/VIC/Documentation/
CalibrateSoil.shtml).

Calibration Methods

To effectively and automatically calibrate the VIC model and maxi-
mize its performance, a novel multisite calibration approach called
MSCC was developed. MSCC sorts the subbasins from upstream to
downstream based on drainage area, and for each one prepares the
parameter ranges and default values. For each subbasin, SCE-UA
generates the parameter files as inputs for VIC.exe and Routing.exe.
Routing.exe routes the grid-simulated runoff and base flow from
VIC.exe to output the simulated streamflow at the outlet. The
1.0-NSCE values are calculated and then passed to SCE-UA
until the optimization criteria are met. Finally, MSCC outputs a
calibrated parameter file (Fig. 2).

In this research, the VIC model was calibrated at all 35 stations
in sequence, from upstream to downstream, following the topo-
graphic relationships of these subbasins, as shown in Fig. 3. For
example, Stations 4, 12, 14, 21, 23, 26, 27, and 29 were all situated
on the same stream (Figs. 1 and 2). Model parameters in the areas
draining to Station 4 were first calibrated and optimized by com-
paring the simulated values with the observations at that station.
These parameters above Station 4 were then fixed. Subsequently,
model parameters in the areas between Station 4 and Station 12
were calibrated to achieve the best result by comparing the modeled
streamflow values against the observations at Station 12. Following
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Table 1. Characteristics of the 35 USGS Streamflow Gauging Stations Used in This Study and the Peak Flow Qualification Codes of the USGS Streamflow
Stations

Drainage Delineated Area relative Peak flow
Number USGS_ID Longitude Latitude area (km?) area (km?) error (%) qualification code
1 07312200 98.91 W 3391 N 1,689 1,923 13.86 6
2 07311000 98.28 W 3436 N 1,797 1,905 6.00 6
3 07335790 95.34 W 3457 N 1,810 2,065 14.08 5
4 07316500 99.67 W 3563 N 2,007 1,727 —-13.98 5
5 07339000 94.63 W 34.04 N 2,072 1,912 —7.74 6
6 07311700 99.79 W 3382 N 2,427 2,564 5.67 0
7 07334000 9591 W 3427 N 2,820 2,863 1.50 5
8 07364200 91.66 W 32.99 N 3,074 2,739 —10.90 0
9 07300000 100.22 W 3496 N 3,165 2,847 —10.04 6
10 07338500 94.76 W 33.94 N 3,181 3,352 5.38 6
11 07300500 99.51 W 34.86 N 3,766 3,957 5.08 5
12 07324400 99.17 W 3554 N 3,952 3,298 —-16.57 6
13 07359002 92.89 W 3443 N 4,014 3,816 —4.93 6
14 07325000 98.96 W 3549 N 5,079 5,025 —1.05 6
15 07301110 99.39 W 3451 N 5,136 4,751 —7.49 5
16 07312100 99.14 W 33.74 N 5,403 5,779 6.96 6
17 07363500 92.03 W 3370 N 5,439 6,383 17.37 0
18 07301500 99.51 W 3517 N 6,869 7,248 5.53 5
19 07340000 94.39 W 3392 N 6,889 7,184 4.27 6
20 07303000 99.31 W 3489 N 7,335 7,723 5.29 6
21 07325500 98.56 W 3512 N 8,070 7,237 -10.33 6
22 07312500 98.53 W 3391 N 8,133 8,984 10.47 6
23 07326500 98.24 W 35.08 N 9,428 9,603 1.86 5
24 07297910 10141 W 3484 N 9,723 10,618 9.21 5
25 07305000 99.10 W 34.64 N 11,810 12,940 9.57 6
26 07328100 97.77 W 3493 N 12,349 11,502 —6.86 6
27 07328500 97.25 W 3475 N 13,742 12,929 —-5.92 6
28 07362000 92.82 W 33.60 N 13,882 14,702 5.91 6
29 07331000 96.98 W 3423 N 18,575 18,340 —-1.27 6
30 07299540 100.19 W 3457 N 20,008 19,359 —3.24 6
31 07308500 98.53 W 3411 N 53,276 54,446 2.20 5
32 07315500 97.93 W 33.88 N 74,392 76,534 2.88 6
33 07335500 95.50 W 33.88 N 115,112 116,467 1.18 6
34 07336820 94.69 W 33.68 N 122,424 124,616 1.79 5
35 07337000 94.04 W 33.55 N 124,319 126,386 1.66 6

Note: For the last column, 0 = natural or unregulated or undefined; 5 = some regulation; 6 = regulation or diversion. Bold stations are located in upstream,
Reach I; the other stations are located in the downstream, Reaches 1I-V.

this, model parameters in the areas between Station 12 and Station
14 were calibrated and determined. By following the upstream-to-
downstream topographic relationships, model parameters in the re-
gions between Station 27 and Station 29 were finally calibrated.
The calibrations from Station 4 to Station 29 formed a cascading
calibration chain: 4 - 12 - 14 - 21 - 23 — 26 — 27 — 29
(Fig. 3). in other words, before model calibration was conducted
‘ Sort Subbasins from at a given Station i, it had been performed at all upstream stations;
Upstream to Down Stream D;‘:lrggiegfes at Station i it was only used to calibrate and optimize model param-
eters for these areas, excluding all drainage areas of the upstream
Call Simulate “children” stations. Similarly, Stations 6, 16, 1, and 22 formed
VIC exe Res"1t5d> another calibration chain, which was composed of two chains of chil-
dren: 6 — 16 and 1 (Fig. 3). during each step of the calibration chain,
Rougﬁgexe }-—»C Outlet ) the SCE-UA method was applied to calibrate the model parameters in
the specific drainage areas as described previously (Sorooshian and
Compute Gupta 1983; Duan et al. 1993, 1994; Xue et al. 2013).

The MSCC method has several advantages: (1) it can sufficiently
utilize observations from all gauging stations in a large basin; (2) it
accounts for the spatial heterogeneities of model parameters across a
basin; (3) it is automated and objective; (4) it achieves better model
(Qutput Calibrated Parameters) performance than conventional single-site calibration and nonnested
multisite calibration in theory; and (5) it is straightforward to

implement using parallel-computing algorithms.

Read and Prepare

[ Input Parameters and Data |

Prepare Parameters
For Subbasin

SCE-UA
rgence
Criteria Satisfied?
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s

Subbasin Loop
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<More Subbasins
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Fig. 2. MSCC Flowchart using SCE-UA and the VIC model
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v
Outlet

Fig. 3. Topological relationships of the 35 stream gauges and their
nested subbasins; the shaded boxes correspond to the stations at basin
outlets used for single-site calibration

The study period, from 1981 to 2012, was divided into three
parts: warm-up (1981-1982), calibration (1983—-1990), and valida-
tion (1991-2012). The model was run during the warm-up period to
minimize the impact of uncertain initial conditions in the region
and to bring the soil states to equilibrium. To evaluate the effective-
ness of the newly developed MSCC method, the simulations using
MSCC calibration were compared with results from two other cal-
ibration strategies: a priori model parameters (i.e., no calibration)
and single-site calibration.

A priori parameter values were obtained directly from Maurer
et al. (2002). Although there was no calibration for simulations
using them, the study period was divided into calibration and
validation periods to be consistent with the simulations using
the other calibration strategies. In single-site calibration, the VIC
model was calibrated against observed streamflow data at Stations
8,17, 19, 28, and 35 (Figs. 1 and 3), which control five independent
subbasins of the Red River Basin (Fig. 1). Three of these stations
(19, 28, and 35) have additional upstream gauging stations, but the
observations from them were withheld.

Model Performance Metrics

To quantify the performance of the model simulations, three widely
used statistical metrics were used in this study: Nash-Sutcliffe
coefficient of efficiency (NSCE), correlation coefficient (CC),
and percent bias (PB). The NSCE was used to determine the
relative magnitude of residual variance in the simulations compared
with observed variance, and to assess the predictive power of a
hydrological model. It is defined as (Nash and Sutcliffe 1970):

>, (OBS; — SIM;)?

NSCE =1 — —
>, (OBS; — SIM;)?

(1)

where n = total number of pairs of simulated and observed
streamflow; SIM and OBS = simulated and observed streamflow,
respectively; i = ith value of simulated and observed streamflow;
and SIM and OBS = mean values of simulated and observed
streamflow, respectively.

The NSCE can range from —oo to 1. A NSCE of 1 indicates
perfect agreement between simulated and observed streamflow.
Positive NSCE values are generally viewed as acceptable levels
of performance, whereas negative values indicate that the model
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is a worse predictor than the observed mean, which is often deemed
unacceptable (Moriasi et al. 2007).

The CC is used to assess the degree of linear association be-
tween simulated and observed streamflow values and is defined as

o " (OBS; — OBS)(SIM; — SIM)
/S, (OBS, — OBS)> 1, (SIM, — SIM)?

(2)

The PB measures the relative difference between modeled and
observed streamflow:

n IM: — n BS.
pp — izt SIMi = DL OBS: 5,
" OBS,

(3)

The optimal PB value is 0.0%. In this study, 1.0-NSCE was
selected as the objective function for the SCE-UA calibration
procedure during the calibration period.

Results and Discussion

Daily Model Results for the Calibration Period

Fig. 4 shows the values of the model performance metrics of the
calibrated daily simulations at 35 stations for the three calibration
strategies. In the case of no calibration (i.e., using a priori parameter
values), 69% of the 35 stations show negative NSCE values
whereas only 9% show NSCE values larger than 0.5 [Fig. 4(a)].
This indicates that the VIC model generally performed poorly in
the Red River Basin using default, a priori parameter values,
and highlights a need to calibrate the model before applying it
to hydrological simulations. Once single-site calibration was con-
ducted at 5 stations (Stations 8, 17, 19, 28, and 35), model perfor-
mance improved in terms of NSCE values: 23% of the stations
show NSCE values larger than 0.5 whereas the percentage showing
negative NSCE values decreased to 37% [Fig. 4(d)]. These 5
stations are located in five independent subbasins and are not
connected with each other; therefore, their drainage areas can be
regarded as parallel basins. In the case of single-site calibration
at the basin outlets, calibration in each station or subbasin was
conducted independently and separately. Once the new MSCC
calibration method was applied, the NSCE values across the basin
substantially improved relative to the results of the single-site
calibrations: 34% of the 35 stations show a NSCE value of more
than 0.5 whereas only 1 station shows a negative NSCE
value (Fig. 4).

Similar findings in terms of model simulation improvements
from no calibration to single-site calibration to multisite cascading
calibration are observed in the performance metrics of CC
[Figs. 4(b, e, and h)] and PB [Figs. 4(c, f, and 1)]. Only 46% of
the 35 stations show a CC value larger than 0.5 for no calibration
[Fig. 4(b)]. In contrast, the percentages increase to 57% for single-
site calibration [Fig. 4(e)] and 60% for MSCC [Fig. 4(h)]. The daily
model simulations show PB values between —15 and 15% only at 6
of the 35 stations [Fig. 4(c)], whereas 12 and 29 stations show PB
values of [—15%, 15%] for single-site [Fig. 4(f)] and MSCC cal-
ibration [Fig. 4(i)], respectively.

The model performance metrics in all three calibration cases
show a similar clear spatial pattern in which model performance
increases from upstream to downstream stations (Fig. 4). This
may be due to the mountainous and complex terrain in the upstream
areas (Reach I), uniform parameter values in subbasins, uncertainty
in the forcing data, and the impact of regulation or diversion
(Table 1). The downstream gradient in improved simulations
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Fig. 4. Spatial maps of skill metrics for daily simulations during the calibration period using (a—c) a priori parameters, (d—f) single-site calibration,
and (g—i) MSCC; the three metrics used were Nash-Sutcliffe coefficient of efficiency (NSCE), correlation coefficient (CC), and percent bias (PB)

was more apparent for no calibration and single-site calibration,
partly because these upstream stations are well displaced
from the selected stations for calibrations, suggesting that a well-
calibrated model at one station cannot warrant good or similar skill
in the upstream or neighboring basins. This finding is similar to that
of Choi et al. (2014).

Daily Model Results for Validation Period

To examine the predictive capabilities of the calibrated VIC model
and the effectiveness of the calibration methods, model skill was
evaluated during the validation period using the parameter values

determined by a priori parameter estimation and the different cal-
ibration strategies. All three daily simulation metrics show similar
spatial patterns and magnitudes during both the validation period
(Fig. 5) and the calibration period (Fig. 4). That is, statistical per-
formance generally increases from west to east or from upstream to
downstream locations or from Reach I to Reaches II, IV, and V for
all methods. Also, the greatest improvements occur with MSCC at
the upstream, or Reach I, western stations (Figs. 4 and 5).

Of the 35 stations, 12 had positive NSCE values using a priori
parameters during the validation period [Fig. 5(a)]. This number
increased to 23 stations for the single-site calibration method
[Fig. 5(d)] and to 34 stations for the MSCC method [Fig. 5(g)].
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Fig. 5. Spatial maps of skill metrics for daily simulations during the validation period using (a—c) a priori parameters, (d—f) single-site calibration, and
(g-1) MSCC:; the three metrics used were Nash—Sutcliffe coefficient of efficiency (NSCE), correlation coefficient (CC), and percent bias (PB)
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period

The statistics were compared during the validation period at the five
stations situated at the independent subbasins that were used for the
single-site calibration. Two of these stations (8 and 17) show no
upstream, interior gauges (Figs. 1 and 3), so the statistical
results from the single-site method were the same as from MSCC
[Figs. 5(d-i)]. Comparisons at the other three stations used for
single-site calibration (19, 28, and 35) show that the MSCC method
yields slight improvements over the single-site method at the basin
outlets according to all statistical measures [Figs. 5(d—i)]. This
result indicates that the cascading approach of optimizing
parameter values in the upstream subbasins has value.
Application of MSCC to the VIC model produced reliable sim-
ulations of surface hydrological processes in the Red River Basin
over a period of years. Fig. 6 shows the distributions of the NSCE,
CC, and PB statistics for all simulations (including the calibration
and validation periods). The top, middle, and bottom of the box
represent the 75th percentile, median, and 25th percentile, respec-
tively; the top and bottom lines show the maximum and minimum
value, respectively. It is clear that the distribution of the NSCE
metric had shifted to higher values from simulations using a
priori parameters to those using single-site calibration and to
those using MSCC, suggesting that MSCC leads to better results
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[Figs. 6(a and b)]. Similarly, the distribution of the CC statistic in
the MSCC results had shifted to higher values than those in the a
priori parameter and single-site calibration results [Figs. 6(c
and d)]. At the same time, the mean and spread of the PB in
the MSCC results largely decreased in the a priori parameter
and single-site calibration results [Figs. 6(e and f)], indicating that
the MSCC method shows a substantial improvement over the
other methods in the PB—the most important statistic for water
balance studies. This implies that the MSCC-calibrated VIC
model can be used in future and past long-term simulation and
drought analysis to account for the impacts of climate change.
These results can be evaluated at interior points in the Red River
Basin, enabling reliable simulations of anthropogenic changes
(both direct and inadvertent) to the basin’s water balance, such
as adding reservoirs, diverting water out of the basin, and increas-
ing evapotranspiration rates.

Summary and Conclusion

In this study, the MSCC method was introduced and applied to a
semidistributed hydrological model to achieve optimum skill si-
multaneously at the basin outlet and at interior, nested locations.
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The MSCC method works by calibrating model parameters in the
most upstream basin, fixing those parameter values, and then cas-
cading downstream to calibrate model parameters in the areas that
drain to the next gauged location, and so on. The method yielded
systematically improved simulations compared with when it was
run with a priori parameters and when it was calibrated at the basin
outlet alone. Validation statistics at three basin outlets with up-
stream stations showed improvement with MSCC when compared
with single-site calibration at the basin outlets. This indicates that
the method succeeds in capturing subbasin-scale variability in
model parameters.

The results of this study indicate that spatial variations in model
parameters are critical to the simulation of hydrological processes.
The MSCC method takes advantage of observations from multiple
sites and uses them to constrain the model in a nested, cascading,
and unified way. Simulations using MSCC can not only utilize all
of the available observations but also better represent the spatial
heterogeneities in model parameters, and it can improve simula-
tions of spatially variable hydrological processes. In this way, it
provides scientifically sound data and information to natural and
cultural resource managers for analyzing the impacts of climate
change on streamflow in the Red River and making informed de-
cisions regarding future use and diversion of both stream flow and
reservoir water storage in the basin.

The MSCC method is most applicable to instrument-rich areas
and large river basins that are more typically gauged. It was suc-
cessfully applied in this study on the 239, 361-km? Red River Basin
in the south-central United States. There is no clear relationship
between model performance and regulation because the USGS only
uses binary codes to describe the degree of regulation. Future stud-
ies will use the MSCC-calibrated hydrologic model to evaluate
long-term impacts on water resources from proposed diversions,
reservoirs, and climate change.
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